MagX Review and Memo

· Wang Merlyn

Related Work

Hand Tracking Applications

Hand Tracking App

Motion-based: IMUs

  • pretraining
  • error accumulation
  • single point of instrumentation
  • employs supervised learning

Vision-based: IR cameras/ laser

  • fine-grained
  • gesture model
  • robust against positional drift
  • privacy, power consumption, computation

RF-based: RF

  • NLOS issues
  • power requirements

Other

Microphone: SaveFace

  • low-cost
  • heavy training
  • binary classification

Ultra Sound:

  • finger movements

Magnetic Tracking

Sensing Magnetic Induction

Sensing the current induced on a coil by a magnet

  • high tracking accuracy
  • long sensing range
  • requires an energy-intensive magnetic field generator
  • large induction coil

Tracking Electromagnetic Field

Each electromagnetic generates an oscillating magnetic field at specific frequencies.

This method is also using magnetometers

  • richer channel info
  • requires wearing powered electromagnetics

Tracking Passive Magnet

LM-based method: array of magnetometers (16)

  • no orientation
  • machine-learning-based
  • pre-defined pose

Algorithm

Tracking Algorithm

$\vec{B} = \frac{\mu_0}{4 \pi} \times ( \frac{3( \vec{m} \cdot \vec{r} )\vec{r}_{ij}}{|\vec{r}|^5} - \frac{\vec{m}}{|\vec{r}|^3})$

对于特定的偶极子就是求6个参数$x,y,z,m,\theta,\phi$ 每个magnometer的观察量都可以被认为是背景磁场和所有无源磁体的线性组合

$\vec{B_i} = G + \sum_{j=1}^{M} \frac{\mu_0}{4 \pi} \times ( \frac{3( \vec{m_j} \cdot \vec{r_{ij}} ) \vec{r_{ij}}} { | \vec{r_{ij}} |^5 } - \frac{ \vec{m_j} }{ |\vec{r_{ij}}|^3 })$

  • 滑动窗口在输入滤波
  • 卡尔曼滤波器在输出时进行轨迹的平滑和预测

Diminishing Magnets

模拟环境生成数据

SVM分类

(我们应该偏好 1or2 有高recall)

Hardware Design

  • accuracy
  • practical range
  • low energy consumption and manufacturing cost

CAMAD

multi-layer -> 2 layer

computer aid vs proposed

PSO

Hardware Configuration

magnetometers calibration

Evaluation

implemented optimized LM in C++, then the algorithm is invoked by python.

Pilot Study

Using Leap Motion observation as ground truth.

框架变换

Overhead

diminishing vs ongoing

拓展

  • 手语翻译
  • 手语学习
  • 康复训练
  • 太空

瞎说的

  • 需要手势的

  • 乐器

  • Channels(不同的磁矩大小?/ 初始对应)

  • 手腕上距离磁铁距离不变为什么要diminish

  • 为什么使用PSO?

  • 距离越近偶极子的模型越不贴近实际磁场,距离远难以精准测量(线性叠加也要考虑各自磁体之间的影响)

  • PCB板 -> 平板设计,难以设计成环

  • 八边形环(纯纯的瞎说)

  • ANN逆向求解(其实感觉不是很靠谱,无法保证精度,无法进行sensor拓展)