MagX Review and Memo
Related Work
Hand Tracking Applications
Hand Tracking App
Motion-based: IMUs
- pretraining
- error accumulation
- single point of instrumentation
- employs supervised learning
Vision-based: IR cameras/ laser
- fine-grained
- gesture model
- robust against positional drift
- privacy, power consumption, computation
RF-based: RF
- NLOS issues
- power requirements
Other
Microphone: SaveFace
- low-cost
- heavy training
- binary classification
Ultra Sound:
- finger movements
Magnetic Tracking
Sensing Magnetic Induction
Sensing the current induced on a coil by a magnet
- high tracking accuracy
- long sensing range
- requires an energy-intensive magnetic field generator
- large induction coil
Tracking Electromagnetic Field
Each electromagnetic generates an oscillating magnetic field at specific frequencies.
This method is also using magnetometers
- richer channel info
- requires wearing powered electromagnetics
Tracking Passive Magnet
LM-based method: array of magnetometers (16)
- no orientation
- machine-learning-based
- pre-defined pose
Algorithm
Tracking Algorithm
$\vec{B} = \frac{\mu_0}{4 \pi} \times ( \frac{3( \vec{m} \cdot \vec{r} )\vec{r}_{ij}}{|\vec{r}|^5} - \frac{\vec{m}}{|\vec{r}|^3})$
对于特定的偶极子就是求6个参数$x,y,z,m,\theta,\phi$ 每个magnometer的观察量都可以被认为是背景磁场和所有无源磁体的线性组合
$\vec{B_i} = G + \sum_{j=1}^{M} \frac{\mu_0}{4 \pi} \times ( \frac{3( \vec{m_j} \cdot \vec{r_{ij}} ) \vec{r_{ij}}} { | \vec{r_{ij}} |^5 } - \frac{ \vec{m_j} }{ |\vec{r_{ij}}|^3 })$
- 滑动窗口在输入滤波
- 卡尔曼滤波器在输出时进行轨迹的平滑和预测
Diminishing Magnets
模拟环境生成数据
SVM分类
(我们应该偏好 1or2 有高recall)
Hardware Design
- accuracy
- practical range
- low energy consumption and manufacturing cost
CAMAD
multi-layer -> 2 layer
computer aid vs proposed
PSO
Hardware Configuration
magnetometers calibration
Evaluation
implemented optimized LM in C++, then the algorithm is invoked by python.
Pilot Study
Using Leap Motion observation as ground truth.
框架变换
Overhead
diminishing vs ongoing
拓展
- 手语翻译
- 手语学习
- 康复训练
- 太空
瞎说的
需要手势的
乐器
Channels(不同的磁矩大小?/ 初始对应)
手腕上距离磁铁距离不变为什么要diminish
为什么使用PSO?
距离越近偶极子的模型越不贴近实际磁场,距离远难以精准测量(线性叠加也要考虑各自磁体之间的影响)
PCB板 -> 平板设计,难以设计成环
八边形环(纯纯的瞎说)
ANN逆向求解(其实感觉不是很靠谱,无法保证精度,无法进行sensor拓展)